Abstract

'쓰가루' 사과의 연화동안에 일어나는 세포벽 성분의 변화와 펙틴 및 중성당류의 가용화와 분해 정도를 조사하였다. 과실의 연화단계별로 펙틴다당류들을 증류수, 0.05 M CDTA, 0.05 M <TEX>$Na_2CO_3$</TEX>, 8 M KOH를 이용하여 분획하였다. Uronic acid (UA) 함량은 과실의 연화가 진행되면서 증류수 가용성 분획에서는 저장 4주후에 급격히 증가하였다. 각 분획별 비섬유성 중성당의 종류를 보면 증류수, 0.05 M CDTA 및 0.05 M <TEX>$Na_2CO_3$</TEX> 가용성분획에서의 주요 구성당은 galactose와 arabinose였으며, 8 M KOH 가용성분획에서는 glucose, galactose 및 xylose였다. 특히 증류수 가용성 분획에서 과실의 연화가 진행되면서 galactose의 함량이 증가되었다. 그리고 증류수 가용성인 물질을 Sepharose CL-2B를 이용하여 uronic acid polymers (UAP)와 carbohydrate polymers (CP)를 분획한 결과를 보면 고분자의 UAP 및 CP가 수확후 과실의 연화가 진행될수록 저분자화 되었다. 고분자 중합물의 양은 과실이 연화됨에 따라 감소하였다. This study was carried out to investigate changes in cell wall components and solubilization and depolymerization of pectin and neutral sugar polymers during softening of 'Tsugaru' apples. Pectic polysaccharides were solubilized in different solvents, distilled-water, 0.05 M CDTA, 0.05 M <TEX>$Na_2CO_3$</TEX>, and 8 M KOH, from cell wall materials during fruit softening. The uronic acid contents in distilled-water fraction rapidly increased along with fruit softening at 4 weeks after ambient storage. In the change of non-cellulosic neutral sugars in the cell wall of ‘Tsugaru’ fruits, the major sugar was galactose and arabinose in distilled-water, 0.05 M CDTA and 0.05 M <TEX>$Na_2CO_3$</TEX> soluble fractions, and it was glucose, galactose and xylose in 8 M KOH fraction. Especially the change of galactose contents in distilled-water fraction was increased greatly along with fruit softening. When uronic acid polymers (UAP) and carbohydrate polymers (CP) in distilled-water fraction were filtered and separated using Sepharose CL-2B column, the high molecular UAP and CP were degraded to the low molecular ones from at harvest to softening fruit. Thus, the amount of high molecular polymers were greatly decreased along with fruit softening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.