Abstract
Excessive presence of heavy metals in environment may contaminate plants and fruits grown in that area. Rapid on-site monitoring of heavy metals can provide useful information to efficiently characterize heavy metal-contaminated sites and minimize the exposure of the contaminated food crops to humans. This study reports on the evaluation of a bismuth-coated glassy carbon electrode for simultaneous determination of cadmium (Cd) and lead (Pb) in a NIST-SRM 1568a rice flour by anodic stripping voltammetry (ASV). The use of a supporting electrolyte 0.1 M <TEX>$HNO_3$</TEX> at a dilution ratio (sample pretreated with acid digestion in a microwave oven: supporting electrolyte) of 1:1 provided well-defined, sharp and separate peaks for Cd and Pb ions, thereby resulting in strongly linear relationships between Cd and Pb concentrations and peak currents measured with the electrode (<TEX>$R^2\;=\;0.97$</TEX>, 0.99 for Cd and Pb, respectively). The validation test results for spiked standard solutions with different concentrations of Cd and Pb gave acceptable predictability for both spiked Cd and Pb ions with mean prediction errors of 6 to 30%. However, the applicability of the electrode to the real rice flour sample was limited by the fact that Cd concentrations spiked in the rice flour sample were overly estimated with relatively high variations even though Pb ion could be quantitatively measured with the electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.