Abstract

The study aims to develop an algorithm and then software to synthesise noise that could be used to attack deep learning neural networks designed to classify images. We present the results of our analysis of methods for conducting this type of attacks. The synthesis of attack noise is stated as a problem of multidimensional constrained optimization. The main features of the attack noise synthesis algorithm proposed are as follows: we employ the clip function to take constraints on noise into account; we use the top-1 and top-5 classification error ratings as attack noise efficiency criteria; we train our neural networks using backpropagation and Adam's gradient descent algorithm; stochastic gradient descent is employed to solve the optimisation problem indicated above; neural network training also makes use of the augmentation technique. The software was developed in Python using the Pytorch framework to dynamically differentiate the calculation graph and runs under Ubuntu 18.04 and CentOS 7. Our IDE was Visual Studio Code. We accelerated the computation via CUDA executed on a NVIDIA Titan XP GPU. The paper presents the results of a broad computational experiment in synthesising non-universal and universal attack noise types for eight deep neural networks. We show that the attack algorithm proposed is able to increase the neural network error by eight times

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call