Abstract

In the Russian Federation, the agro-industrial complex is one of the leading sectors of the eco-nomy with a volume of domestic product of 4.5%. Russia owns 10 % of all arable land in the world. According to the data on the sown areas by crops in 2020, most of the agricultural area of Russia is occupied by wheat. The Russian Federation ranks third in the ranking of leading countries in the production of this type of grain crops, as well as leading positions in its export. Brown (leaf) and linear (stem) rust is the most harmful disease of grain crops. It is the reason for the sparseness of wheat crops and leads to a sharp decrease in yield. Therefore, one of the main tasks of farmers is to preserve the crop from diseases. The application of such areas of artificial intelligence as computer vision, machine learning and deep learning is able to cope with this task. These artificial intelligence technologies allow us to successfully solve applied problems of the agro-industrial complex using automated analysis of photographic materials. Aim. To consider the application of computer vision methods for the problem of classification of lesions of cultivated plants on the example of wheat. Materials and methods. The CGIAR Computer Vision for Crop Disease dataset for the crop disease recognition task is taken from the open source Kaggle. It is proposed to use an approach to the re-cognition of lesions of cultivated plants using the well-known neural network models ResNet50, DenseNet169, VGG16 and EfficientNet-B0. Neural network models receive images of wheat as in-put. The output of neural networks is the class of plant damage. To overcome the effect of overfit-ting neural networks, various regularization techniques are investigated. Results. The results of the classification quality, estimated by the software using the F1-score metric, which is the average harmonic between the Precision and Recall measures, are presented. Conclusion. As a result of the conducted research, it was found that the DenseNet model showed the best recognition accuracy us-ing a combination of transfer learning technology and DropOut and L2 regulation technologies to overcome the effect of retraining. The use of this approach allowed us to achieve a recognition ac-curacy of 91%.

Highlights

  • Введение В настоящее время довольно сложно представить какую-либо отрасль экономики, в которой бы не использовались информационные технологии

  • It is proposed to use an approach to the recognition of lesions of cultivated plants using the well-known neural network models ResNet50, DenseNet169, VGG16 and EfficientNet-B0

  • As a result of the conducted research, it was found that the DenseNet model showed the best recognition accuracy using a combination of transfer learning technology and DropOut and L2 regulation technologies to overcome the effect of retraining

Read more

Summary

Информатика и вычислительная техника

Рассмотреть применение методов компьютерного зрения для задачи классификации поражений культурных растений на примере пшеницы. В результате проведенного исследования установлено, что наилучшую точность распознавания показала модель DenseNet c применением комбинации технологии трансферного обучения и технологий регуляризации DropOut и L2 для преодоления эффекта переобучения. Помочь справиться с этой задачей способно применение таких областей искусственного интеллекта, как компьютерное зрение, машинное обучение и глубокое обучение, которые позволяют успешно решать прикладные задачи агропромышленного комплекса при помощи автоматизированного анализа фотоматериалов. Становится актуальной задача применения технологий компьютерного зрения для разработки модели распознавания поражений культурных растений. После этого 1080 изображений набора данных, включающих изображения девяти различных болезней риса, используются для повторного обучения предложенной модели. В работе использован набор данных Plant Village Dataset, в котором содержится 54306 изображений, содержащих фотографии как зараженных листьев (38 различных заболеваний культурных растений), так и здоровых.

Год создания
Precision healthy leaf wheat rust stem rust
CNN ResNet DenseNet VGGNet EfficientNet
ОБРАЗЕЦ ЦИТИРОВАНИЯ
Findings
FOR CITATION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.