Abstract

In this article, considerable attention is paid to the method of mathematical creation of a structurally complex soil environment with vegetation. Structural and technological parameters of the interaction of the working bodies of the fire-fighting soil thrower with soil have been determined using a simulation-physical-mathematical model of the spherical disk relationship with the soil environment. The disk is equipped with a cutting edge with semicircular cuts. The mathematical model presents complex geometry of all forms of active work planes, as well as the relationship of the working bodies with soil elements. Surfaces of complex construction in the process of applying the finite element method have been transformed into a large number of simplified planar figures. The soil in the simulation physical-mathematical model is described as a complex system of a large number of spherical elements, determinately connecting with each other, as well as with the working planes of the machine. It has been determined that the relationship between the soil particles during deformation is viscoelastic in its nature. The calculation of forces is presented in the form of an algorithm for the interaction of elements on each other in relation to the distance of their location. The equations of motion are used that describe the change in the dynamic state of the soil over time. The movement of the working bodies of the unit, including spherical disk working bodies with cutouts in the framework of the mathematical model, has been considered in the simulated space, described as a parallelepiped. The ability to simulate the interaction of the working bodies of a forest fire soil-throwing machine with a working medium, including plant roots, which are located next to each other in the form of spherical elements in the geometric region. The task of increasing the efficiency of the forest fire-fighting soil-throwing machine when laying fire strips has been solved by improving the quality of preparing the soil shaft with spherical hydraulic disks equipped with a cutting edge with semicircular cuts, which are subsequently taken by thrower-cutters and feed the soil flow in a given direction

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call