Abstract

construction of energy- and resource-saving housing of increased comfort involves the creation of more efficient building materials in comparison with traditional and new designs of fencing buildings with improved thermal properties. The problem of energy saving in construction has determined the direction of creation and production of effective cheap materials with high thermal properties. One of the most promising materials of this type is environmentally friendly, non-combustible cellular foam concrete. The problem of accelerating the setting and hardening of foam concrete mixtures, as it allows to accelerate the turnover of forms and reduce the time from manufacturing to sending the finished product to the consumer is of great practical interest. However, in most cases, domestic foaming agents are produced and used without additional input of setting and hardening regulators. This is due to the fact that the compatibility of the latter with the main additive – foaming agents is not sufficiently investigated. This problem is quite complex, as some setting accelerators can cause defoaming, worsen the structure of the foam matrix, reduce the mechanical strength of the stone and have other negative effects. At the same time, properly selected setting accelerators enhance the action of foaming agents In the work the questions of application of semi-aqueous calcium sulphate (SCS) for intensification of hardening of foam concrete are considered. The change in physical and mechanical characteristics of foam concrete prepared on anionic and cationic blowing agents with an additional content of 1, 2 and 3% semi-aqueous calcium sulphate is shown. It is established that the SCC allows accelerating the hardening processes, and the formation of ettringite does not cause strong internal stresses, which is related to the porous structure of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.