Abstract
The aim of the work is to study modern ways to increase the operational reliability of the furnace and hearth of blast furnaces, which largely determine the duration of the blast furnace campaign. The article analyzes the ways to increase the stability of the furnace and hearth, presents the results of the analysis of thermal work and ignition of the lining of metal receivers of blast furnaces of different designs. The modern directions of construction of the metal receiver of blast furnaces are determined. It is shown that the modern methodology of construction of blast furnace furnaces develops two main directions: the use of a coordinated combination of refractory materials with a cooling system; use of a combination of wear-resistant materials based on carbon and ceramics. However, even the improvement of the design and cooling system of the metal receiver does not allow to fully increase the duration of the campaign. To assess the service life of the furnace, it is necessary to provide regular automated control of the ignition of the furnace lining and hearth. In Ukraine, during the renovation of blast furnaces, the design of metal receivers with the use of "ceramic glass" was preferred. To date, the system of monitoring the thermal work and ignition of the furnace has been implemented in 10 blast furnaces using the automatic control system "Horn" developed by the HMI NASU. The implementation of continuous control over the ignition of the furnace in blast furnaces allowed us to assess the effect of the use of ceramic cups. The value of heat losses of the furnace and the cost of coke for their compensation are estimated. Methods and models for determining the thermal state and wear of the metal receiver lining based on a combination of calorimetric and thermometric control methods have been developed. Comparison of heat losses of the metal receiver in the cooling system of blast furnaces allows to quantify the thermal performance of controlled areas and the furnace as a whole. It is shown that the specific value of heat loss of the metal receiver per unit volume of the blast furnace can serve as an integral parameter. It is established that the value of specific heat losses per unit volume of the blast furnace with a ceramic cup is ~ 0.4-0.7 kW/m3, which is much less than blast furnaces without it (~ 0.9-1.1 kW/m3). Ceramic glass saves coke about 1 kg/t of cast iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fundamental and applied problems of ferrous metallurgy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.