Abstract
We study vector optimization problems in partially ordered Banach Spaces. We suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the ”classical” scalarization of vector optimization problems in the form of weighted sum and also we propose other type of scalarization for vector optimization problem, the socalled adaptive scalarization, which inherits some ideas of Pascoletti-Serafini approach. As a result, we show that the scalar nonlinear optimization problems can byturn approximated by the quadratic minimization problems. The advantage of such regularization is especially interesting from a numerical point of view because it gives a possibility to apply rather simple computational methods for the approximation of the whole set of efficient solutions.
Highlights
Ðîçãëÿäàþòüñÿ çàäà÷i âåêòîðíîîïòèìiçàöiâ áàíàõîâèõ ïðîñòîðàõ ó ïîñòàíîâöi, ÿêà çàëó÷à1 òîïîëîãi÷íi âëàñòèâîñòi ïðîñòîðó îáðàçiâ öiëüîâîãî âiäîáðàæåííÿ.
Íåõàé {ηk}∞ k=1 1 Λ-íåçðîñòàþ÷îþ ïîñëiäîâíiñòþ â Z, òîáòî òàêîþ, ùî óìîâà ηk+1 ≤Λ ηk âèêîíó1òüñÿ äëÿ âñiõ k ∈ N.
Ïîñëiäîâíiñòü {Θηk }∞ k=1 çáiãà1òüñÿ çà Êóðàòîâñüêèì (Ks-çáiãà1òüñÿ) äî ìíîæèíè Θ, ÿêùî âèêîíó1òüñÿ óìîâà: Ks lim inf k→∞
Summary
Ðîçãëÿäàþòüñÿ çàäà÷i âåêòîðíîîïòèìiçàöiâ áàíàõîâèõ ïðîñòîðàõ ó ïîñòàíîâöi, ÿêà çàëó÷à1 òîïîëîãi÷íi âëàñòèâîñòi ïðîñòîðó îáðàçiâ öiëüîâîãî âiäîáðàæåííÿ. Íåõàé {ηk}∞ k=1 1 Λ-íåçðîñòàþ÷îþ ïîñëiäîâíiñòþ â Z, òîáòî òàêîþ, ùî óìîâà ηk+1 ≤Λ ηk âèêîíó1òüñÿ äëÿ âñiõ k ∈ N.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Вісник Дніпропетровського університету. Серія: Моделювання
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.