Abstract

We study vector optimization problems in partially ordered Banach Spaces. We sup­pose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the ”clas­sical” scalarization of vector optimization problems in the form of weighted sum and also we propose other type of scalarization for vector optimization problem, the socalled adaptive scalarization, which inherits some ideas of Pascoletti-Serafini approach. As a result, we show that the scalar nonlinear optimization problems can byturn approxi­mated by the quadratic minimization problems. The advantage of such regularization is especially interesting from a numerical point of view because it gives a possibility to apply rather simple computational methods for the approximation of the whole set of efficient solutions.

Highlights

  • Ðîçãëÿäàþòüñÿ çàäà÷i âåêòîðíîîïòèìiçàöiâ áàíàõîâèõ ïðîñòîðàõ ó ïîñòàíîâöi, ÿêà çàëó÷à1 òîïîëîãi÷íi âëàñòèâîñòi ïðîñòîðó îáðàçiâ öiëüîâîãî âiäîáðàæåííÿ.

  • Íåõàé {ηk}∞ k=1 1 Λ-íåçðîñòàþ÷îþ ïîñëiäîâíiñòþ â Z, òîáòî òàêîþ, ùî óìîâà ηk+1 ≤Λ ηk âèêîíó1òüñÿ äëÿ âñiõ k ∈ N.

  • Ïîñëiäîâíiñòü {Θηk }∞ k=1 çáiãà1òüñÿ çà Êóðàòîâñüêèì (Ks-çáiãà1òüñÿ) äî ìíîæèíè Θ, ÿêùî âèêîíó1òüñÿ óìîâà: Ks lim inf k→∞

Read more

Summary

Introduction

Ðîçãëÿäàþòüñÿ çàäà÷i âåêòîðíîîïòèìiçàöiâ áàíàõîâèõ ïðîñòîðàõ ó ïîñòàíîâöi, ÿêà çàëó÷à1 òîïîëîãi÷íi âëàñòèâîñòi ïðîñòîðó îáðàçiâ öiëüîâîãî âiäîáðàæåííÿ. Íåõàé {ηk}∞ k=1 1 Λ-íåçðîñòàþ÷îþ ïîñëiäîâíiñòþ â Z, òîáòî òàêîþ, ùî óìîâà ηk+1 ≤Λ ηk âèêîíó1òüñÿ äëÿ âñiõ k ∈ N.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.