Abstract

This paper presents a multiple vehicle recognition algorithm based on radar and vision sensor fusion for lane change assistance. To determine whether the lane change is possible, it is necessary to recognize not only a primary vehicle which is located in-lane, but also other adjacent vehicles in the left and/or right lanes. With the given sensor configuration, two challenging problems are considered. One is that the guardrail detected by the front radar might be recognized as a left or right vehicle due to its genetic characteristics. This problem can be solved by a guardrail recognition algorithm based on motion and shape attributes. The other problem is that the recognition of rear vehicles in the left or right lanes might be wrong, especially on curved roads due to the low accuracy of the lateral position measured by rear radars, as well as due to a lack of knowledge of road curvature in the backward direction. In order to solve this problem, it is proposed that the road curvature measured by the front vision sensor is used to derive the road curvature toward the rear direction. Finally, the proposed algorithm for multiple vehicle recognition is validated via field test data on real roads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.