Abstract

For power plants reduction of heat losses is one of the main ways to save energy. Energy saving issue is one of the priority areas of the development of science, engineering, and technology in the Russian Federation. Efficiency upgrading of the equipment operation are associated with the condensers of turbine units, since more than 50 percent of the fuel energy is released into the environment with cooling water. The operating efficiency of a condenser with built-in heating beams significantly affects the vacuum in the condenser and, thus, the operating efficiency of the entire unit. Diagnostics of the condition and improvement of operating modes of the condenser of a turbine unit with a built-in heating unit is an urgent scientific and practical issue. To develop a model of a condenser with a built-in heating beam, the methodology of matrix formalization of the description of heat and mass transfer processes has been used. To solve the problem of diagnosing the condition of equipment, methods of least squares and mathematical programming have been used. Within the framework of the matrix formalization methodology, the authors have developed an approach to solve inverse problems of diagnosing and designing multi-flow heat exchange equipment considering the phase transition in coolants. The authors have obtained and analyzed solutions of the inverse problem from the point of view of diagnosing the state of heat exchange equipment using the example of a turbine unit condenser with a built-in heating beam. Analysis of the calculated results has shown an adequate description by the model of the standard data for the analyzed condenser. Analysis results have shown the possibility to use the model for runtime diagnosis of the condition of power equipment and the efficient use of energy resources due to preventing ineffective modes. The proposed approach allows us to formulate and solve inverse problems of diagnosing the state of equipment of condensing units for various purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.