Abstract

The purpose of this paper was to study erythrocyte osmotic resistance (EOR) and its relationship with the quantitative and morphofunctional parameters of red blood cells in young women with limited physical activity depending on the I/D polymorphism of the ACE gene. Materials and methods. The study involved 200 healthy women aged 18–22 years leading a sedentary lifestyle. Their blood samples were taken for genotyping and to determine the haemoglobin (HGB) level and red blood cell count (RBC), their mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) as well as haematocrit (HCT). EOR was studied by measuring the optical density of haemoglobin solutions after erythrocyte destruction in a series of hypotonic NaCl solutions with the concentration decreasing from 0.8 % to 0.1 %. Based on the results of osmotic haemolysis, erythrograms were produced and the NaCl concentrations were determined, at which 10, 50 and 90 % of the red blood cells were destroyed. Results. Carriers of the DD genotype were characterized by the lowest resistance to haemolysis in all three erythrocyte populations. According to the analysis of factor structures, in girls with the DD genotype only relationships between the total and individual parameters of erythrocytes were established. In carriers of the I allele (ID and II genotypes) the dominant factor combined the total red blood cell parameters (RBC, HGB, HCT) and the EOR of old, mature, and young erythrocytes. Thus, carriers of the I allele (ID and II genotypes) of the ACE gene are characterized by a higher resistance of mature and old cell populations than those of the DD genotype, while EOR variations in the former are interconnected with changes in the quantitative parameters of red blood cells. At the same time, an increase in EOR is combined with an increase in erythrocyte functional activity. DD genotype carriers showed no correlations between EOR and the quantitative and morphofunctional parameters of red blood cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call