Abstract

The paper presents the results of analysing existing approaches to estimating how efficient small orbital spacecraft systems are for the purpose of optoelectronic surveillance, including determining their shortcomings. We simulated employing an orbital system required to ensure surveying the earth surface at various latitudes, accounting for sunrise and sunset time on the winter and summer solstice days, and discovered that the following parameters show low sensitivity: average daily object sighting number at a preset latitude and maximum time delay between object sightings at a preset latitude. We propose a new efficiency factor reflecting a confidence interval regarding the object sighting time delay. We developed a procedure utilising the factor proposed, expanding the scientific methodology in terms of estimating how efficient small orbital spacecraft systems are for optoelectronic surveillance. We obtained object sighting time delays at a preset latitude as functions of the probability of these delays occurring. We recommend using this procedure to estimate the efficiency of jointly employing several small orbital spacecraft systems and incomplete composition systems, as well as to state and solve the problem of synthesising the ballistic structure of an orbital system intended to improve the efficiency of earth surveillance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call