Abstract

In developing new composite materials and solving heat transfer problems, the thermal conductivity is an important characteristic that must be reliably determined. This often requires samples of the smallest dimensions, which is relevant for the production of pilot batches of material, as well as if they are taken directly from the product, when the amount of material is very limited. Most common methods for determining thermal conductivity require samples of relatively large sizes. To measure thermal conductivity on small-sized samples, an upgraded benchtop instrument is introduced. The instrument uses the relative method of longitudinal heat flux, which consists in a comparative measurement of a sample located between the heater and the standard in a stationary thermal mode. This paper presents the instrument design details, the requirements for the samples, explains the calibration features and the measurement procedure. The measurement results in a number of composite materials, as well as in materials with well-studied properties are analyzed. Findings show that the error of determining the thermal conductivity on a modernized instrument does not exceed several percent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call