Abstract
Dislocation-related photoluminescence is studied in unimplanted and implanted with oxygen ions silicon wafers after multistage heat treatment, used for the formation of internal getter in microelectronics, and final annealing at 1000°С in a chlorine-containing atmosphere. In unimplanted sample, the dislocation-related luminescence line D1 dominates and its intensity is more than one order of magnitude in comparison with another dislocation-related luminescence line D2. With increasing temperature, an intensity of the D1 line increases and then decreases. In implanted sample, the intensities of the D1 and D2 lines increase. For both the lines, temperature quenching of their intensities is observed only. The energies of quenching and increase of the intensities of dislocation-related photoluminescence lines are determined. Possible reasons of observed effects are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.