Abstract

Elementary solution of a biharmonic equation is introduced in analogy to the known elementary solution of the Laplace equation. Relation of this elementary solution with the elementary solution of the Laplace equation gets determined. Depending on dimensionality of space in which a boundary problem is being under research, a symmetric function of two variables gets determined in explicit form through the introduced elementary solution. Then it gets proved that this function possesses properties of Green’s function of the Dirichlet problem for biharmonic equation in a unit ball. Two cases when space dimensionality equals two and when space dimensionality is more than two are being researched separately. Analogous to Green’s function of the Dirichlet problem for Poisson’s equation in a ball, there is expansion of Green’s function of the Dirichlet problem for biharmonic equation in a ball in the full, orthogonal-at-the-unit-sphere, system of homogenous harmonic polynominals. This is to be done in case when space dimensionality is more than four. Using the obtained expansion of Green’s function, integral gets calculated by a ball with the kernel out of Green’s function from a homogenous harmonic polynominal multiplied by the positive degree of norm of the independent variable. The obtained results get complied with the previously known results in this sphere

Highlights

  • Найдем явное представление функции Грина этой краевой задачи. Хорошо известно (см., например, [1]), что функция Грина задачи Дирихле для уравнения Пуассона в шаре при n ≥ 2 имеет вид.

  • Хорошо известно (см., например, [1]), что функция Грина задачи Дирихле для уравнения Пуассона в шаре при n ≥ 2 имеет вид

  • В работе [12] найдена функция Грина третьей краевой задачи для уравнения Пуассона.

Read more

Summary

Introduction

Найдем явное представление функции Грина этой краевой задачи. Хорошо известно (см., например, [1]), что функция Грина задачи Дирихле для уравнения Пуассона в шаре при n ≥ 2 имеет вид. Хорошо известно (см., например, [1]), что функция Грина задачи Дирихле для уравнения Пуассона в шаре при n ≥ 2 имеет вид В работе [12] найдена функция Грина третьей краевой задачи для уравнения Пуассона. Об одном представлении функции Грина задачи Дирихле для бигармонического уравнения в шаре и значит Функция Грина G4 (x,ξ ) симметрична относительно x и ξ и бигармоническая при x,ξ ∈ S , x ≠ ξ .

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.