Abstract

Numerical simulation of thermomechanical processes in a deep underground radioactive waste repository requires information on the host rock and the engineered barriers properties at a scale of dozens of centimeters, meters and more. However, the extrapolation of the values obtained on small-scale samples in surface laboratories yields excessive uncertainties. The materials behavior is also influenced by conditions that cannot be reliably reproduced in a surface laboratory, such as water content or initial stress-strain state. Following experiments are planned to study the host rock and the engineered barriers behavior during heating under conditions similar to those expected in the repository, as well as to assess their large-scale thermomechanical properties. In the experiment focused on the excavation damaged zone thermal mechanics, the behavior of reinforced drift walls and vaults under heating will be studied. The experimental facility will involve two drifts with the same orientation as the planned repository ones. As a result, the spatial distribution of excavation damaged zone thermomechanical parameters and their evolution due to heating will be identified. The second experiment focuses on the host rock mass behavior under spatially nonuniform unsteady heating. The facility will feature two vertical boreholes with heaters. The experiment will be divided into several stages: study of the host rock initial state, estimation of the rock main thermomechanical properties, study of the temporal evolution of the stress field due to 3D temperature gradients and of the processes in the host rock occurring during its cooling and re-saturation with water. Following the completion of the separate-effect test program, an integrated experiment should be carried out to study the coupled processes with respect to their mutual influence. The obtained results will be used to refine the values of input parameters for numerical simulations and their uncertainty ranges, as well as to validate the computer codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call