Abstract

The molecular dynamics simulation is used to analyze the features of the deformation behavior and the process of fracture of graphene with dislocation dipoles with different arm. Moreover, the wrinkling of graphene during deformation is taken into account, which greatly reduces the strength of graphene. It has been established that an increase in temperature slightly affects the mechanical properties of graphene with dislocation dipoles, in contrast to defect-free graphene and graphene with a Stone–Wales defect. It is shown that a change in the distance between dislocations in a dipole does not significantly affect the elastic modulus and graphene strength. However, the presence of dislocation dipoles can affect graphene wrinkling during stretching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call