Abstract
Age-related macular degeneration (AMD) is one of the main causes of loss of sight and hypovision in people over working age. Results of optical coherence tomography (OCT) are essential for diagnostics of the disease. Developing the recommendation system to analyze OCT images will reduce the time to process visual data and decrease the probability of errors while working as a doctor. The purpose of the study was to develop an algorithm of segmentation to analyze the results of macular OCT in patients with AMD. It allows to provide a correct prediction of an AMD stage based on the form of discovered pathologies. A program has been developed in the Python programming language using the Pytorch and TensorFlow libraries. Its quality was estimated using OCT macular images of 51 patients with early, intermediate, late AMD. A segmentation algorithm of OCT images was developed based on convolutional neural network. UNet network was selected as architecture of high-accuracy neural net. The neural net is trained on macular OCT images of 125 patients (197 eyes). The author algorithm displayed 98.1% of properly segmented areas on OCT images, which are the most essential for diagnostics and determination of an AMD stage. Weighted sensitivity and specificity of AMD stage classifier amounted to 83.8% and 84.9% respectively. The developed algorithm is promising as a recommendation system that implements the AMD classification based on data that promote taking decisions regarding the treatment strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.