Abstract

The work is devoted to the study of the influence of the structural features of the crystal on the resistance of DMOS transistors under the influence of ionizing radiation. A comparison of the results of instrumentation and technological modeling of commercially available p-channel DMOS transistors designed for the maximum allowable drain-source voltage of 60V and 100V is carried out. Modeling was carried out in the TCAD environment, all the basic physical principles of the structure under study were taken into account with the help of appropriate mathematical models. The obtained values of the model's electrical parameters showed full compliance with the normative values. The critical points of the crystal design that affect the performance of transistors in the presence of ionizing radiation from outer space are determined. The influence of the electric field strength in the crystal body on the resistance to ionizing radiation is estimated. It is shown that the actual values of the electric field strength in the region of the p-n junction do not exceed the values of the critical strength, having a margin of more than 1.22 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.