Abstract
The paper describes a numerical model simulating thermal conditions of contacting solids considering heat release in the contact region. The finite-volume model is implemented in the Logos Heat digital product within the Logos software package. Logos Heat serves for numerical simulations of heat transfer processes in solids and in air gaps without convective heat transfer. Its methods and algorithms enable thermal simulations of three-dimensional and two-dimensional (including axisymmetric) structures under steady and unsteady conditions using nonconformal mesh models considering contact energy release. We selected and considered the most common ways to determine the heat partition coefficient for the energy released by two solids being at rest or in sliding contact. The methods and algorithms incorporated in the numerical scheme of the Logos Heat product to consider the contact energy release were assessed using a case with a known exact solution and numerical data reported in. The analysis of the calculated data shows that the maximum error does not exceed 0.1% for the resting model and 8% for the sliding-contact model, which indicates that the methods and algorithms are appropriate for such simulations. However, it should be noted that, within the Logos Heat numerical scheme, the solution calculated by Charron's formula introduces an error, which is one order higher than the error associated with the temperature conduction method, and creates a temperature discontinuity at the contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.