Abstract

Purpose: Descriptive analysis of the distributions of organ/tissue doses for individuals exposed to radiation as a result of liquid waste releases into the Techa River by the Mayak Production Association (PA) in 1949–1956. 
 Material and methods: The dosimetry system TRDS-2016D has been used to compute individual doses of external and internal exposures. TRDS-2016D databases include information on radionuclide intakes and dose rates in air for settlements located in the contaminated areas of the Techa River and the East Ural Radioactive Trace (EURT). Combining these village-average data with the residence history and age of a particular person, the system produces an individual scenario of external exposure and individual radionuclide intakes and then calculates corresponding external and internal doses from the Techa River and EURT. Available 90Sr-body-burden measurements and available information on individual household locations relative to the contaminated river have been used for refinement of individual dose estimates. 
 Results: Individual doses have been calculated for 29,647 persons included in the Techa River Cohort (TRC). According to residence history data, 5,280 members of the TRC were additionally exposed due to residency in the EURT villages. The cohort-average dose for the majority of extra-skeletal tissues does not exceed 100 mGy, while for the red bone marrow (RBM) it is equal to 350 mGy. In addition to the doses from the Techa River and EURT, individual thyroid doses for TRC members exposed to the Mayak PA atmospheric 131I releases have been calculated in a separate computer program. The cohort–average thyroid dose is 210 mGy. Maximum doses (about 1 Gy to the majority of extra-skeletal tissues and over 7 Gy to the thyroid and RBM) are observed for the persons who lived in their childhood and adolescence in the upper Techa region at close distance to the Mayak PA.
 Conclusion: The TRC members were exposed to chronic radiation over a wide range of doses, but at low-to-moderate-dose rates. Estimates of absorbed doses can be used to analyze the dose dependences of the incidence of solid cancers and leukemias. This can make it possible to verify risk coefficients of low-dose-rate effects of ionizing radiation which can be used for radiation protection purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.