Abstract

The effect of H2, NH3, CO and O2 on the electrically conductive properties of In2O3 films grown by halide vapor phase epitaxy has been studied. In the temperature range of 200−550°C, In2O3 films demonstrate gas sensitivity to all considered gases, a relatively high operation speed and repeatability of cycles. The greatest response to NH3 was obtained, which exceeded 33 arb.units at a temperature of 400°C and a gas concentration of 1000 ppm. A qualitative mechanism of gas sensitivity of In2O3 films is proposed. The obtained gas-sensitive characteristics are compared with known NH3 sensors based on various materials. It is shown that the method of halide vapor phase epitaxy makes it possible to obtain indium oxide films with high gas sensitivity

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.