Abstract
본 연구는 초기조건에 민감한 공간 트러스를 대상으로 불완전성으로 인한 분기거동 및 불안정 특성에 대해서 연구하였으며, 접선강성행렬의 행렬식과 고유치해석으로 임계점과 좌굴하중을 구하였다. 고유모드의 민감성에 의한 불안정 현상을 고찰하기 위해서 2-자유절점공간 트러스와 스타 돔 및 3링 돔 모델을 예제로 채택하였으며, 라이즈-스팬 비 및 하중 파라메타에 따른 좌굴하중의 영향을 분석하였다. 2-자유절점 모델의 초기 형상불완전성에 따른 민감성은 고유모드에 따라 임계 후 평형경로가 바뀌었으며, 좌굴하중은 불완전 량의 증가에 따라 감소하는 결과를 얻었다. 예제에서 나타난 두 가지 민감한 좌굴패턴은 자유절점의 변위 위치를 살펴봄으로서 설명할 수 있었고, 형상 불완전성에 따른 거동은 비대칭 고유모드가 가장 큰 영향을 주었다. 민감한 고유모드는 단순화한 모델의 비신장 메커니즘 기저와 유사하였다. 스타 돔 모델은 라이즈-스팬 비가 높을수록 전체좌굴보다는 국부좌굴이 우세하며, 하중 파라메타 값이 클수록 평형경로 상에 분기점이 발생하였다. 또한 스타돔과 3링 모델의 좌굴하중은 각각 극한점 하중레벨의 약 50-70% 및 80-90%로 나타났다. This study investigated the characteristics of bifurcation and the instability due to the initial imperfection of the space truss, which is sensitive to the initial conditions, and the calculated buckling load by the analysis of Eigen-values and the determinant of tangential stiffness. A two-free nodes model, a star dome, and a three-ring dome model were selected as case studies in order to examine the unstable phenomenon due to the sensitivity to Eigen mode, and the influence of the rise-span ratio and the load parameter on the buckling load were analyzed. The sensitivity to the imperfection of the two-free nodes model changed the critical path after reaching the limit point through the bifurcation mode, and the buckling load level was reduced by the increase in the amount of imperfection. The two sensitive buckling patterns for the model can be explained by investigating the displaced position of the free node, and the asymmetric Eigen mode was a major influence on the unstable behavior due to the initial imperfection. The sensitive mode was similar to the in-extensional mechanism basis of the simplified model. Since the rise-span ratio was higher, the effect of local buckling is more prominent than the global buckling in the star dome, and bifurcation on the equilibrium path occurring as the value of the load parameter was higher. Additionally, the buckling load levels of the star dome and the three-ring model were about 50-70% and 80-90% of the limit point, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.