Abstract

2004년 4월 1일, 국내 최초의 고속철도(HSR)인 KTX (Korea Train eXpress)가 경부선에 도 입 되었다. KTX의 등장은 경부선을 이용하는 철도 승객들의 운송수단 선택 및 도시구간별 이 용객 수 변화를 가져왔다. KTX의 등장과 같은 개입사건(Intervention events)의 영향은 개입사 건 전후 변화를 단순 통계량으로 분석하거나 개입 ARIMA 모델을 통해 분석 되었다. 개입 ARIMA 모델은 개입사건의 발생 시점(t)과 개입사건의 영향 형태(type) 등의 가정이 필요하다는 한계가 있었으며, 본 연구에서는 기존 연구에서의 한계점을 보완할 수 있는 시계열 이상치 탐지(time series outlier detection)를 활용하였다. 일반적으로 개입사건의 발생시기는 잘 알려져 있지 않으므로 시계열 이상치 탐지를 통해 개입사건에의 발생 시기를 추정할 수 있다. 시계열 이상치 탐지기법을 활용하여 개입의 시점과 영향 형태에 관한 가 정 없이 개입사건에 대한 영향을 분석할 수 있으며, 발생된 이상치의 시점을 개입사건의 시점, 이상치의 영향을 개입 사건의 영향으로 가정하였다. 데이터는 KTDB (Korea Transport Database)로 부터 KTX가 도입되기 이전인 2003 년부터 2014년까지 12년 동안의 경부선(4개의 주요 도시구간 합산)을 포함한 주요 도시구간 4개의 월별데이터를 수집하여 활용하였다. 경부선 도시 구간별 이상치를 탐지 하고 그 영향을 분석한 결과, 동일한 개입사건 임에도 그 영향의 형태의 정도가 도시구간마다 다르게 나타나거나 영향이 나타나지 않았으며, 기존 연구에서 분석되지 않은 개입사건을 찾을 수 있었다.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.