Abstract

Rolling noise is an important source of noise from railways; it is caused by wheel and rail vibrations induced by acoustic roughness at the wheel/rail contact. To reduce rolling noise, it is necessary to have a reliable prediction model that can be used to investigate the effects of various parameters related to the rolling noise. This paper deals with modeling rolling noise from wheel and rail vibrations. In this study, the track is modeled as a discretely supported beam by regarding concrete slab tracks, and the wheel vibration is simulated by using the finite element method. The vertical and lateral wheel/rail contact forces are modeled using the linearized Hertzian contact theory, and then the vibration responses of the wheel and rail are calculated to predict the radiated noise. To validate the proposed model, a field measurement was carried out for a test vehicle. It was found that the predicted result agrees well with the measured one, showing similar behavior in the frequency range between 200 and 4000 Hz where the rolling noise is prominent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.