Abstract
근적외선 반사율 분광분석법을 이용하여 리기다 소나무, 소나무, 잣나무, 백합나무의 섬유포화점 이하 함수율 예측모델을 개발하였다. 시편들을 다양한 평형함수율 상태로 유도한 후 1000 nm~2400 nm 파장영역의 반사율 스펙트럼을 획득하였다. 최적 함수율 예측 모델을 선정하기 위해 5가지의 수학적 전처리(moving average (smoothing point: 3), baseline, standard normal variate (SNV), mean normalization, Savitzky-Golay <TEX>$2^{nd}$</TEX> derivatives (polynomial order: 3, smoothing point: 11))를 8가지 조합으로 각 시편의 반사율 스펙트럼에 적용하였다. 수학적 전처리 후, 변형된 스펙트럼을 이용하여 PLS 회귀분석을 실시하였다. 그 결과, 최적 함수율 예측 모델을 도출한 전처리 방법은 리기다 소나무와 소나무의 경우 moving average/SNV, 잣나무와 백합나무의 경우 moving average/SNV/Savitzky-Golay <TEX>$2^{nd}$</TEX> derivatives이며, 모든 모델은 3개의 주성분을 포함하고 있었다. Near infrared (NIR) reflectance spectroscopy was employed to develop moisture content prediction model of pitch pine (Pinus rigida), red pine (Pinus densiflora), Korean pine (Pinus koraiensis), yellow poplar (Liriodendron tulipifera) wood below fiber saturation point. NIR reflectance spectra of specimens ranging from 1000 nm to 2400 nm were acquired after humidifying specimens to reach several equilibrium moisture contents. To determine the optimal moisture contents prediction model, 5 mathematical preprocessing methods (moving average (smoothing point: 3), baseline, standard normal variate (SNV), mean normalization, Savitzky-Golay <TEX>$2^{nd}$</TEX> derivatives (polynomial order: 3, smoothing point: 11)) were applied to reflectance spectra of each specimen as 8 combinations. After finishing mathematical preprocessings, partial least squares (PLS) regression analysis was performed to each modified spectra. Consequently, the mathematical preprocessing methods deriving optimal moisture content prediction were 1) moving average/SNV for pitch pine and red pine, 2) moving average/SNV/Savitzky-golay <TEX>$2^{nd}$</TEX> derivatives for Korean pine and yellow poplar. Every model contained three principal components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.