Abstract

Keeping poultry in damp and cold rooms with poor ventilation system reduces the weight gain of the bird, reduces its egg production and increases the incidence of young animals, as well as excessive feed consumption and exceeding the growing period established by technical regulations. The aim of the study was to determine the effective placement of exhaust ventilation equipment at the height of the end wall of the poultry house to improve the ventilation system, reduce stagnant air zones and improve the microclimate. The numerical modeling of hydrodynamics, heat and mass transfer processes during air ventilation in poultry buildings is carried out. The analysis of the conditions of heat and mass transfer in the poultry house, depending on the placement of fans along the height of the house, and the efficiency of the location of such equipment was determined. The system for maintaining the microclimate in poultry houses was considered in the presence of a system for cooling the outside air with water from an underground well. The ventilation system uses exhaust ventilation equipment with a fan wheel diameter of 1.25 m. In the simulation, the fans were installed at a height of 1.125, 1.5 and 1.875 m from the floor to the center of the fan axis. Simulation was performed for 2D CFD models using ANSYS Fluent software. The results of CFD analysis of the air flow pattern and the thermal state inside the house are presented. As a result of numerous studies, the geometry of the location of the ventilation equipment has been found. It is shown that it is advisable to install ventilation equipment at a height of 1.5 m. At the same time, the size of stagnant zones and the uneven distribution of air velocity near the bird are reduced. Numerical modeling was carried out in order to minimize the size of stagnant zones, equalize the air flow and improve the temperature indicators in the poultry house.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.