Abstract

Currently, there is a lack of studies on the strength and stability of reinforced composite shells, taking into account the momentness and nonlinearity of the initial stress-strain state. Most of the known solutions to the shells stability problems are obtained by analytical and numerical methods, as a rule, in the linear approximation, i.e. in the classical formulation. A developed technique is proposed implementing the finite element method for solving the problems of strength and stability of discrete-reinforced cylindrical shells made of the composite material, taking into account the momentness and nonlinearity of their subcritical stress-strain state. The transverse bending stability of the reinforced aircraft fuselage compartment made of composite material has been investigated. The effect of deformation nonlinearity, stiffness of stringer set, shell thickness on critical loads of the shell instability has been determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call