Abstract

A large number of aviation events are associated with the surge of gas turbine engines. The article analyzes the existing systems for diagnostics of the surge of gas turbine engines. An analysis of the acoustic signal of a properly operating gas turbine engine was carried out, at which a close theoretical distribution of random values was determined, which corresponds to the studied distribution of the amplitudes of the acoustic signal. An invariant has been developed that makes it possible to evaluate the development of rotating stall when analyzing the acoustic signal of gas turbine engines. A method is proposed for diagnosing the pre-surge state of gas turbine engines, which is based on processing an acoustic signal using invariant dependencies for random processes. A hardware-software complex has been developed using the developed acoustic method for diagnosing the pre-surge state of gas turbine engines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.