Abstract

This study deals with the determination of ratios of light metals (Li, Na, K, Mg, and Ca) in zooplankton (Calanus spp.) by calibration free laser-induced breakdown spectroscopy, assuming local thermodynamic equilibrium. The temperature of laser-induced plasma of zooplankton was derived from rotation-vibration bands of CN, and the electron density was calculated by Stark broadening of Mg I 383.23 nm, Li I 610.37 nm, and Ca II 396.85 nm lines. The synthetic spectra calculated with a radiation transport model for the experimental values of T and Ne were used for a selection of analytical atomic lines free from self-absorption. We compared the obtained data with the results of atomic emission and mass spectrometry with inductively coupled plasma. We also discussed the influence of ionization equilibrium on the accuracy of the results. We propose the presented method for direct semi-quantitative determination of Li, Mg, and Ca ratios in zooplankton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.