Abstract

The understanding of impaired neural control of gait after stroke is important to evaluate mobility impairments focused on improving walking function. Previous studies have shown that the central nervous system may control gait via muscle synergies, which modularly organizes multiple muscles. However, there are insufficient studies to evaluate mobility impairments, using muscle synergy during walking in post-stroke patients. Thus, the purpose of this study was to determine if the variability of muscle synergies during gait reflects impaired motor performance. Electromyography (EMG) signals were collected from five persons with post-stroke hemiparesis and five similarly age healthy persons, as they walked on a treadmill at a comfortable speed. EMG signals were decomposed using non-negative matrix factorization and the variability of muscle synergies was calculated using a synergy stability index (SSI). We also investigated correlation between the SSI and Fugl-Meyer assessment and Berg Balance Scale, which are clinical evaluation indicators. Post-stroke patients were found to have variable muscle synergies. We also observed a positive proportional relation, between SSI and clinical motor impair evaluation indicators. These results could yield a quantitative assessment of gait after stroke, and provide a causal relationship between internal neuromuscular mechanisms and functional performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call