Abstract
The efficiency and maximum height, speed and duration characteristics of the flight path of high-speed atmospheric aircraft are largely determined by the temperature regime of the most heat-stressed structural elements, suchas the edges of airframe airfoils. Their active thermal protection systems contribute to solving a number of complex scientific and technical problems, the most promising and simple solution being heat-resistant inorganic materials of the oxide class. However, their use for the structural design of the edge as a monolithic structural element is difficult both in terms of technology and strength characteristics, especially in the heat shock mode. In this regard, a promising solution is an edge in the form of a core made of heat-resistant and heat-conducting materials with a high-temperature oxide ceramic lining, which protects from the environmental oxidative effects and provides the permissible temperature regime of the core due to thermal resistance determined by the thickness of the lining. The study examines the temperature conditions of the wedge-shaped edge with a heat-conducting core and a heat-resistant ceramic lining. When choosing materials for the core and lining, it is important to preliminary calculate and estimate the parameters of the edge performance, taking into account the data on the thermophysical and physicomechanical properties of the materials. The study comparatively analyzes the thermal state of a prefabricated wedge with a heat-conducting core made of hafnium boride, which is an advanced heat-resistant material, and molybdenum and nickel, which are more technological and cheap metal materials, with a lining of oxide heat-resistant ceramics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.