Abstract

Numerical modeling of propagation and absorption of fast waves (helicons) with frequency 200 MHz in 2D inhomogeneous plasma of the spherical tokamak Globus-M2 was carried out with 2D full-wave code. Toroidal effects, poloidal magnetic field and the actual shape of the flux surfaces were taken into account. The full wave electric field and RF power absorption profiles were computed by solving plasma wave equation with electron Landau damping term. The modeling demonstrated a fairly high efficiency of helicons absorption in the bulk plasma within a wide range of experimental parameters. The waves propagate to the inner regions of the plasma column and are mainly absorbed there; less than 20% of RF energy returns back to the plasma periphery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call