Abstract
In two parts of the work, numerical and physical modeling of the deformation of the bar in the channel under axial compression is carried out. The regularities of nonlinear bending of the bar in the plane are revealed. Bar shapes are determined by the load history and can differ at the same force value. The solution is to find the shape with the lowest potential energy. The first part of the work describes the numerical model of the bar and the results of its application. The shapes of the bar bending under gradual loading are obtained, the studies coinciding with V.I. Feodosev’s analytical solution. Further research shows that the solution to the problem has a more complex ramified structure with various additional shapes. Deformation of the bar under gradual loading occurs in the form of a sequential variant appearance of bending waves in the bar under forces determined by the degree of non-uniformity of the lengths of potentially unstable sections and forming a range of shape instability. In variant transitions from one initial shape with a loss of stability, it is possible to obtain various subsequent shapes that differ in the sequence of deformation of the sections with one number of half-waves, or the number of generated half-waves. When a straight bar is loaded in one step, an increase in the force leads to a sequential increase in the number of bending half-waves in the corresponding ranges of the existence of shapes. The results obtained can be applied to the analysis of the operation of such bar objects as drill, casing, tubing strings in the well and cased pipelines, pipelines in the well and tunnel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.