Abstract

The paper considers fuels used as a working body in ramjets. The study aims to conduct a comprehensive examination that includes comparing physical, chemical and power characteristics of the fuels, as well as the results of thermodynamic and ballistic analyses, in order to ensure the best possible outcome in terms of layout and range of the spaceplane simulated. We analysed existing publications to state the main requirements for fuels to be used in spaceplane ramjets. We present a method of estimating fuel efficiency. The requirements developed for the spaceplane simulated were used to select a range of cryogenic hydrocarbons, for which we computed combustion efficiency and determined the thrust coefficient, specific impulse and flight range as functions of oxidizer-to-fuel ratio and flight velocity. We show that the hydrocarbon fuels under consideration manifest similar thrust, impulse response and trajectory characteristics, all other conditions being equal. Cryogenic methane displayed the best combustion efficiency, flight range and onboard fuel capacity. Given that methane is difficult to work with due to the low temperatures and increased pressure it requires, we propose using cryogenic propane as the main ramjet fuel type

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.