Abstract
본 연구에서는 옥살산 전처리 바이오매스의 액상가수분해산물에 포함된 발효저해물질을 전기투석과 XAD 수지 처리하여 제거한 후 에탄올을 생산하였다. 전기투석 과정에서 아세트산은 대부분 제거되었으며(95.6%), 비이온성 발효저해물질(Total phenolic compound: TPC, 5-hydroxymethyl furfural: HMF, furfural)은 XAD 수지 처리에 의해 효과적으로 제거되었다. 전기투석과 XAD 수지 처리된 액상가수분해산물로 발효를 수행한 결과 XAD 수지의 침지시간이 짧을수록 에탄올 생산이 향상되었다. 최대 에탄올 생산은 발효 72시간 후 <TEX>$6.16g/{\ell}$</TEX>로 전기투석 후 액상가수분해산물을 XAD-4 수지에서 5분 침지하였을 때 나타났다. 리그닌 유래 발효저해물질 중 syringaldehyde는 저농도(1 mM, 2 mM)에서 에탄올 생산을 향상시켰으며 5 mM에서는 발효에 부정적인 영향을 주었다. 리그닌 유래 발효저해물질의 시너지 효과를 확인하고자 합성배지로 발효를 수행하였으며, Syringaldehyde (1 mM)와 ferulic acid (1 mM) 합성배지를 이용하여 발효를 수행한 결과 syringaldehyde보다 ferulic acid의 영향으로 에탄올 생산이 감소했다. In this study, ethanol was produced from a biomass hydrolysate that had been treated by electrodialysis (ED) and Amberlite XAD resin to remove fermentation inhibitors. Most of the acetic acid (95.6%) was removed during the ED process. Non-ionizable compounds such as total phenolic compounds, 5-hydroxymethyl furfural, and furfural were effectively removed by the XAD resin treatment. Ethanol production was improved when the ED-treated hydrolysate was treated with XAD-4 resin for a short reaction time. The highest ethanol production from ED-treated hydrolysate was <TEX>$6.16g/{\ell}$</TEX> (after 72 h of fermentation) when the treatment with XAD-4 resin was for 5 min. Among the lignin-derived fermentation inhibitors tested, syringaldehyde in low concentrations (1 and 2 mM) in the hydrolysate increased ethanol production, whereas a high concentration (5 mM) inhibited the ethanol production process. A synthetic medium containing syringaldehyde and ferulic acid was prepared to investigate the synergistic effect of inhibitors on ethanol fermentation. Ethanol production decreased in the mixture of 1 mM syringaldehyde and 1 mM ferulic acid, implying that the effect of ferulic acid on ethanol fermentation is comparable to that of syringaldehyde.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.