Abstract

If due to heating or cooling of an object, a phase transition occurs, the propagation of heat significantly changes. Behavior of the enthalpy, heat capacity, density, coefficient of the heat-conductivity as a function of temperature, changes in a complicated manner. For example, when a ternary eutectic alloy is cooling, one solid phase is formed first, then the second, and finally the entire alloy crystallizes. By heating the surface of the solid metal cylindrical object with three-component composition above the liquidus temperature, the two- or three-phase zone occurs at the surface, and moves to the cylinder axis. We propose a method of introducing “effective” specific heat that allows calculating the speed of this zone movement, as well as the temperature of the object at any point and at any time. The ordinary equation of heat conductivity with variable coefficients was used. For each point of a sample for each corresponding temperature, the fractions of liquid and all solid phases were calculated. Specific volume, thermal conductivity and specific enthalpy were calculated as the weighted average of the corresponding values for the liquid and solid states. The specific heat was calculated as the derivative of the enthalpy with respect to temperature. The resulting system of differential equations is reduced to finite-difference equations. A compu­ter program was developed to solve the resulting system of difference equations. Results of one of such calculations are given in the article. The developed method allows to calculate the velocity of the phase boundary, as well as the object temperature at any point and at any time. The presented method may be useful for metallurgists (calculation of heating of parts in heat treatment, calculation of heating of pieces of charge in the steel smelting furnace), for metrologists (self-testing temperature sensors) and others.

Highlights

  • H A mi LБудем считать их равными соответствующим удельным величинам чистых компонентов и вычислять по формулам (2)

  • В случае если в теле при его нагреве или охлаждении происходит фазовый переход, процесс распространения в нем тепла претерпевает сильные изменения

  • We propose a method of introducing “effective” specific heat that allows calculating the speed of this zone movement, as well as the temperature of the object at any point and at any time

Read more

Summary

H A mi L

Будем считать их равными соответствующим удельным величинам чистых компонентов и вычислять по формулам (2). При снижении температуры ниже TL вначале выделяется одна твердая фаза S1 – нужно рассматривать равновесие между жидкой фазой L и твердой фазой S1. . Затем, при дальнейшем снижении температуры, ниже TS 2 может начать выделяться следующая твердая фаза S 2 – нужно рассматривать равновесие между жидкой фазой L и двумя твердыми фазами S1 , S 2. Массы твердой и жидкой фаз сплава при данной температуре T. Найдем массы жидкой m L и твердой m S1 фаз сплава:. За неимением точных данных будем считать их равными соответствующим удельным величинам чистых компонентов и вычислять по формулам (1), (2). Найдем массы жидкой m L и твердых m S1 , m S2 фаз сплава:.

H A mI S
Findings
Для температур T TS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.