Abstract

In this paper, the heat transfer performance of porous microchannels sintered with spherical and dendritic copper particle is compared. The working fluid is deionized water. For uniform particle size sample, the dendritic-particle microchannel presents better boiling heat transfer performance than the spherical-particle one. It includes higher critical heat flux (CHF), which was related to the connected pore structure of the dendritic copper powder. For mixed particle size sample, the dendritic-particle microchannel also shows higher heat transfer coefficient and CHF. At high heat flux, the dendritic-particle microchannel can effectively suppress the pressure pulsation and maintain a relatively stable flow boiling state in the microchannel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call