Abstract

On the basis of a deterministic-probabilistic model for assessing the occurrence of fires of interconnected vegetation areas according to natural and anthropogenic conditions, a geoinformation system has been developed, consisting of a database and blocks for access to open data and searching adjacent neighborhoods, calculating meteorological and anthropogenic fire danger, and for regulating forest protection measures. Databases contain information about vegetation fires, data from hydrometeorological stations and anthropogenic sources. To account for the influence of interconnected areas on fire danger, a complex with an algorithm for searching vegetation quarters was used and its integration with the blocks of the geoinformation system was carried out. The architecture of the geoinformation system is based on a three-tier distribution, including a database server with API access support, an application broker and an application for visualization of calculation results. The API server stores structured data from open sources accessible via application exchange protocols, the application broker contains functions for data collection, calculation of indicators and their visualization in third-party applications. To build electronic maps, open data from the OpenStreetMap resource for the districts of the Russian Federation in the WSG 84 cartographic projection was used. Individual vegetation fires were obtained according to MODIS satellite monitoring data from 2013 to 2022. The attribute data of fires contain the identifier, the coordinates of the center, the area of ignition, the date of detection and elimination, the forest and non-forest area. Verification of the system is planned to be carried out in the fire season 2023–2024.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.