Abstract

In this paper, the dependence of the sublimation temperature of soot particles synthesized during the combustion of various hydrocarbons, depending on their size and structure, is obtained. The experimental approach is based on the analysis of the thermal radiation of particles heated to the sublimation temperature by a nanosecond laser pulse. The sublimation temperature of soot particles was measured using the two-color pyrometry method. In this paper, it is proposed to use the average size of primary particles to compare data in different flames. It is established, that the sublimation temperature of soot particles depends mainly on the stage of their formation, which is characterized by an increase in average size. It is shown, that with an increase in the average particle size from 12 to 23 nm, their sublimation temperature increases significantly from 2700 to 4500 K. This reflects a significant difference in the thermodynamic and optical properties of the so-called "young" and "mature" soot particles, which must be taken into account when developing methods of soot diagnostics and in the thermo-physical analysis of combustion and pyrolysis processes with the formation of soot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.