Abstract

Operating characteristics of semiconductor quantum well (QW) lasers are theoretically studied in terms of the thickness of the waveguide region [optical confinement layer (OCL)]. We calculate the maximum modal gain, optical confinement factor (in QW, OCL, and cladding layers), threshold current density, electron and hole densities (in QW and OCL), internal optical loss (in QW, OCL, and cladding layers), internal differential quantum efficiency, stimulated and spontaneous recombination currents, and output optical power of the laser as functions of the OCL thickness. It is shown that up to the pump current density 50 kA/cm2 the output power of the considered lasers depends only slightly on the OCL thickness in the range of thicknesses 1.5–2.8 m. This result is important for designing high brightness lasers as broadened waveguides are used in such lasers to attain low beam divergence. At high pump current densities, the output power is shown to have a maximum as a function of the OCL thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call