Abstract

데이터를 구조화하여 사용하는 관계형 데이터베이스가 현재까지 데이터 관리에 가장 많이 사용되고 있다. 그러나 관계형 데이터베이스는 데이터가 증가되면 데이터를 저장하거나 조회할 때 읽기, 쓰기 연산 수행에 제약 조건이 발생되어 서비스가 느려지는 현상이 나타난다. 또 새로운 업무가 추가되면 데이터베이스 내 데이터는 증가되고 결국 이를 해결하기 위해 하드웨어의 병렬 구성, CPU, 메모리, 네트워크 등 추가적인 인프라 구성을 필요로 하게 된다. 본 논문에서는 관계형 데이터베이스의 데이터 증가로 느려지는 웹 정보서비스 개선을 위해 기존 관계형 데이터베이스의 데이터를 하둡 HDFS로 전송하고 이를 일원화하여 데이터를 재구성한 후 사용자에게 하둡 데이터 처리로 대량의 데이터를 빠르고 안전하게 추출하는 모델을 구현한다. 본 시스템 적용을 위해 웹 기반 민원시스템과 비정형 데이터 처리인 이미지 파일 저장에 본 제안시스템을 적용하였다. 적용결과 관계형 데이터베이스 시스템보다 제안시스템 데이터 처리가 0.4초 더 빠른 결과를 얻을 수 있었고 기존 관계형 데이터베이스와 같은 대량의 데이터를 처리를 빅 데이터 기법인 하둡 데이터 처리로도 웹 정보서비스를 지원이 가능하였다. 또한 하둡은 오픈소스로 제공되어 소프트웨어 구매 비용을 줄여주는 장점이 있으며 기존 관계형 데이터베이스의 데이터 증가로 효율적인 대용량 데이터 처리를 요구하는 조직에게 도움을 줄 수 있을 것이다. Relational databases used by structuralizing data are the most widely used in data management at present. However, in relational databases, service becomes slower as the amount of data increases because of constraints in the reading and writing operations to save or query data. Furthermore, when a new task is added, the database grows and, consequently, requires additional infrastructure, such as parallel configuration of hardware, CPU, memory, and network, to support smooth operation. In this paper, in order to improve the web information services that are slowing down due to increase of data in the relational databases, we implemented a model to extract a large amount of data quickly and safely for users by processing Hadoop Distributed File System (HDFS) files after sending data to HDFSs and unifying and reconstructing the data. We implemented our model in a Web-based civil affairs system that stores image files, which is irregular data processing. Our proposed system's data processing was found to be 0.4 sec faster than that of a relational database system. Thus, we found that it is possible to support Web information services with a Hadoop-based big data processing technique in order to process a large amount of data, as in conventional relational databases. Furthermore, since Hadoop is open source, our model has the advantage of reducing software costs. The proposed system is expected to be used as a model for Web services that provide fast information processing for organizations that require efficient processing of big data because of the increase in the size of conventional relational databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.