Abstract

This paper presents a mechanism of formation of a hard-to-weld polycarbonate joint by ultrasonic welding. The method utilizes internal and external friction occurring in the welded joint area on abutting surfaces due to shear vibrations of the end of the upper part relative to the lower part. A layer of the heated welded material is formed, localized by thickness, in which predominant absorption of the ultrasonic vibrations occurs, which allows one to obtain high-quality and durable welded joints without significant deformation due to the concentration of thermal energy in the welding zone. The effect of independent welding pressure on the strength of the welded joint of polycarbonate is considered. A new method of ultrasonic welding under the conditions of independent pressure is proposed. The method consists of dividing the static welding pressure into two components: the pressure of the acoustic contact in the zone of contact of the waveguide with the product, and the welding pressure that compresses the welded products, with the latter component being lower than the former. In order to obtain high-quality welded joints made of polycarbonate and to prevent displacement of the welded edges during the welding process relative to each other, a special preparation of the welded edges is developed, which allows one part to be moved vertically relative to the other during the welding process. It is established that the quality of welding depends on the speed of movement and the angle of cutting the edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.