Abstract

The paper is devoted to the study of the prospects for improving the parachute-retrorocket airdrop system (PRS) in order to increase its reliability and enable the ability to adjust the orientation of a load in the horizontal plane depending on the slope of the earth's surface at the landing site. The primary task is to improve the accuracy of the altimeter, which determines the triggering moment of the PRS jet engines. The replacement of a mechanical altimeter of an outdated design with a modern electronic radio altimeter based on phased array radar is proposed, which allows to improve the accuracy of determining the absolute altitude(distance to the ground) and to take into account a roll of the load during the descent. The ways of determining the slope of earth's surface at the estimated landing site are also discussed. The results obtained make it possible to increase the accuracy of radio altimeter operation and significantly reduce the probability of an error in determining the absolute altitude due to rocking or static roll of the object. In addition to determining the current values of the height and speed of the descent of the vehicle, the use of a scanning radar makes it possible to estimate the inclination angle of the Earth’s surface at the landing site (in the radar scanning plane). If a certain angle of inclination of the earth surface at the landing site turns out to be too large, the probability of a successful landing can be increased by correcting the object's descent path, taking into account the information received. One of the easiest ways to correct a descent trajectory is to equip an object with small aerodynamic elements (rudders) and electromechanical actuators, ensuring their necessary orientation based on the results of determining the surface relief with radar. As one of the options, the authors propose the use of additional jet engines, which are structurally located on opposite sides of the object of landing in such a way as to form a torque of rotation of the object in a space from 0 ° to 90 ° in the horizontal plane due to the kinetic energy of motion from the actuation of jet engines. The triggering moment of the squibs is calculated based on determining the optimal distance of the object to the ground surface, and the need for triggering the squibs to rotate the object (correcting its position in space) depends on a certain value of the slope angle of the earth surface and comparing it with the admissible critical values of the angle, at which the object loses its stability during landing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call