Abstract

Using the method of molecular dynamics and a 2D chain model, it is shown that thermophoresis of carbon nanoparticles (nanoribbons and nanotubes) on a flat multilayer substrate (on a flat surface of a hexagonal boron nitride crystal) has high efficiency. Placing a nanoparticle on a flat surface of a substrate involved in heat transfer leads to its movement in the direction of the heat flow. The heat flow along the substrate leads to the formation of constant forces acting on the nanoparticle nodes (thermophoresis forces). The main effect of the force is exerted on the edges of graphene nanoribbons, exactly where the main interaction of the nanoribbon with the bending phonons of the substrate occurs. These phonons have a long free path, so the effective transfer of nanoparticles using thermophoresis can occur at sufficiently large distances. The motion of carbon nanoparticles under the action of a heat flow has the form of particle motion in a viscous medium under the action of a constant force. Over time, the nanoparticles always enter the mode of movement at a constant speed. The velocity of the stationary motion is almost the same for all sizes and types of carbon nanoparticles, which is explained by the fact that the thermophoresis force and effective friction have the same source – the interaction of the nanoparticle with the bending thermal vibrations of the substrate layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.