Abstract

For the production of various machine-building products - rolling rolls, parts of power equipment, piercing mandrels - complex alloy steels containing chromium and a significant number of other deficient alloying elements (nickel, vanadium, molybdenum) type 38Ni3CrMoV are used. The paper presents the results of research on the influence of modes of hardening and subsequent cryogenic treatment on the parameters of the structure, hardness and wear resistance of this steel. Visible changes in the microstructure of thermally improved steel samples during cryogenic treatment were not found, which can be explained by the high thermodynamic stability of the sorbitol structure and the practical absence of residual austenite due to its decomposition during high tempering. It is shown that cryogenic treatment of thermally improved 38Ni3CrMoV steel contributes to an increase in the hardness, toughness and wear resistance this steel (~3.8 %). In this case, there is a slight increase in the parameter and magnitude of microstresses of the crystal lattice, an increase in the density of dislocations due to the removal of thermal stresses. To obtain a multiphase structure of 38Ni3CrMoV steel with retained austenite, isothermal quenching from the γ - α region has been proposed. The use of cryogenic treatment for the experimental mode of hardening of 38Ni3CrMoV steel samples promotes the transformation of retained austenite in the final structure of the samples into martensite with a significant increase in the microhardness of its structural components at the 22.3 %. The experimental hardening mode + cryogenic treatment provides a significant increase in the hardness and wear resistance of 38Ni3CrMoV steel at the 21.6 % while ensuring a certain level of its impact toughness (more than 4 J/cm2) and can be recommended for the implementation of the technology of differentiated hardening of large-sized products made of 38Ni3CrMoV steel. Keywords: steel, structure, hardness, wear resistance, isothermal hardening, cryogenic treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call