Abstract

Abstract: The effect of dispersants organic (CTAB) and inorganic nature (sodium pyrophosphate and sodium silicate) on the critical heat flux (CHF) and heat-transfer coefficient (HTC) of boiling various aqueous nanofluids (NFs) under conditions of free convection is studied. It has been established that the addition of ionic dispersants to aluminosilicate NFs, increasing their aggregative and sedimentation stability, as a rule, worsens their heat-transfer parameters during boiling, causing a sudden pre-crisis heater burnout in a test unit powered by direct current. The mechanism of the phenomenon is revealed. On the contrary, the addition of dispersants and surfactants to carbon-containing NFs with high thermal conductivity, improving their stability, at the same time increases the heat transfer coefficient during boiling of NFs, but also cause pre-crisis heater burnout in the case of direct current heating. The effect of dispersants on crisis phenomena during boiling of water and NFs is analyzed and the causes of sudden pre-crisis heater burnout have been elucidated. Several mechanisms have been proposed for interpreting the observed effects, from which the expediency of using alternating heating current and non-ionic, non-foaming surfactants and dispersants to avoid an early onset of the boiling crisis in order to achieve higher values of the critical heat flux and the heat transfer coefficient during the NFs boiling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call