Abstract

The paper investigates a concept of an aerospace system based on air launch from subsonic twin-fuselage aircraft and on the rocket launch into orbit. We propose a scheme of aerospace system trajectory providing return to the starting point both of the carrier and the first rocket stage with liquid-fuel motors. A method for multidisciplinary calculation and optimization of the design parameters of the aerospace system and approximately optimal control of the motion of the system steps with different power units in all flight segments, as well as a feasibility study, was developed On the basis of the developed techno-economic analysis methodology, a complex of computational programs in C ++ was compiled to determine the main design parameters and characteristics. The comparative analysis of three versions of carrier aircraft and three fuel options at the first rocket stage was carried out. The analysis showed that compared to kerosene variant the hydrogen hypersonic booster made it possible to significantly increase the payload mass while the launching costs stayed the same. We compared engineering-and-economic performance of the aerospace system with “Soyuz-2.1” expendable launch vehicle. The comparison showed that the unit cost of aerospace system injection can be reduced significantly compared to an expendable carrier due to system reusability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call