Abstract

The use of modifying additives in cement concrete compositions is the most affordable way to improve their technological, physical, and mechanical properties. However, the high cost and territorial limitation of the most effective modifiers (microsilica, metakaolin) production do not meet the growing customer’s demand. The development of mineral additives based on local raw materials will bridge deficit the most common additives, as well as reduce the consumption of Portland cement. The paper presents the results of determining the fracture toughness (crack growth resistance) of fine-grained concretes obtained from self-compacting concrete mixtures modified with thermally activated clay (Nikitskoye deposit, Saransk, Republic of Mordovia) and thermally activated mixture of clay and limestone (Atemar village, Republic of Mordovia). The paper contains the assessment of crack resistance of fine-grained concretes conducted in accordance with GOST 29167-2021 during equilibrium bending tests of type I samples. The paper found a 9 38% increase in fracture toughness of modified fine-grained concretes with increasing binder consumption due to the introduction of mineral additives in the composition under study

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call