Abstract

Solid oxide fuel cell is a next generation energy conversion device that can efficiently convert the chemical energy of fuel into electrical energy. Fuel flexibility is one of the advantages of SOFCs over other types of fuel cells. SOFCs can operate with hydrocarbon type fuel. While nickel based composite is commonly used in direct methane fueled SOFC anode because of its great catalytic activity for methane reforming, the direct use of hydrocarbon fuels with pure Ni anode is usually insufficient for facile anode kinetics, and also deactivates the anode activity because of carbon deposition upon prolonged operation. In this report, the Ni based anodes with 20 nm thick catalytic functional layers, i.e., Pt, Ru, and Pt-Ru alloy, are fabricated by using the co-sputtering method to enhance the anode activity and power density of direct-methane SOFC operating at 500℃.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.